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Let’s say there is a debugging function, simplified here as:

{
( , varname, var);

}

 str[ ]= ;
(str, );

> str : foobar

void DumpString( * var, * varname)char char

printf "%s : '%s'\n"

char 10 "foobar"
DumpString "str"

Let’s make it easier by removing the unnecessarily extraneous requirement of passing the
variable twice, once in quotes:

{
( , (var), var);

}

 str[ ]= ;
(str);

> var : foobar

#  VARASSTR(v) #vdefine

void DumpString( * var)char

printf "%s : '%s'\n" VARASSTR

char 10 "foobar"
DumpString

Oops! It uses the local variable name instead of the one passed in. Let’s try a different (and
less ideal) tack:

{
( , varname, var);

}

 str[ ]= ;
(str);

> str : foobar

#  DumpStr(v) DumpString(v, #v)define

void DumpString( * var, * varname)char char

printf "%s : '%s'\n"

char 10 "foobar"
DumpStr

Great it works. But what if the function was a little more complicated:

{
( , varname, var);
( , optionalvar);

}

void DumpString( * var, * varname,  optionalvar= )char char int 0

printf "%s : '%s'\n"
printf "blah: %d"

It is not possible to overload a macro, so  won’t work, and we have already ruled out
the version with .

DumpStr

VARASSTR
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How can this be handled (without resorting to multiple similarly, but differently-named
functions/macros)?
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"How can this be handled (without resorting to multiple similarly, but differently-named
functions/macros)?" It can't. You can't overload macros. – meagar ♦ Apr 2 '12 at 0:11

  You should try some language with reflection capabilities. No, really. – iehrlich Apr 2 '12 at 0:13
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You could use  to "simulate" overloading with macros.Variadic macro trick – Jesse Good Apr 2 '12 at
0:27

  Thanks for linking my question. :-) – R.. GitHub STOP HELPING ICE Apr 2 '12 at 1:15

 
You cannot overload functions too (or why did you tag this question ), so what is the problem?c

– asaelr Apr 2 '12 at 1:18
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1

This is non-standard, but works as an extension in GNU C:

#  DumpStr(v, ...) DumpString(v, #v, ##__VA_ARGS__)define

In GNU C, you can pass no arguments to a variadic macro, and the "token pasting operator" 
 when applied between a comma and an empty variadic argument list produces nothing

(so the trailing comma is suppressed).
##

In Visual C++, I believe the token pasting operator  is unnecessary (and will probably break
the macro), as Visual C++ automatically suppresses a trailing comma if it appears before an
empty variadic argument list.

##

Note that the only thing that makes this nonstandard is the desire to sometimes pass an
empty argument list. Variadic macros are standardized in both C99 and C++11.

 And here's an example that doesn't use non-standard features. You can see why some
people really, really wish this sort of thing was addressed in the standard:
Edit:

#  DUMPSTR_1(v) DumpString(v, #v)define

#  DUMPSTR_2(v, opt) DumpString(v, #v, opt)define

#  DUMPSTR_NARG(...) DUMPSTR_ARG_N(__VA_ARGS__, 4, 3, 2, 1, 0)define

#  DUMPSTR_ARG_N(_1, _2, _3, _4, n, ...) ndefine

#  DUMPSTR_NC(f, ...) f(__VA_ARGS__)define

#  DUMPSTR_NB(nargs, ...) DUMPSTR_NC(DUMPSTR_ ## nargs, __VA_ARGS__)define
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#  DUMPSTR_NA(nargs, ...) DUMPSTR_NB(nargs, __VA_ARGS__)define

#  DumpStr(...) DUMPSTR_NA(DUMPSTR_NARG(__VA_ARGS__), __VA_ARGS__)define

There's probably a few cleaner ways to do this. But not that many.

 And here's yet another example that doesn't use non-standard features, courtesy of Edit 2: R..

#  STRINGIFY_IMPL(s) #sdefine

#  STRINGIFY(s) STRINGIFY_IMPL(s)define

#  ARG1_IMPL(a, ...) adefine

#  ARG1(...) ARG1_IMPL(__VA_ARGS__, 0)define

#  DumpStr(...) DumpString(STRINGIFY(ARG1(__VA_ARGS__)), __VA_ARGS__)define

Note that this requires the argument order of the  to be changed so that the
stringified function name is the first argument.

DumpString
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 There are solutions to this problem without nonstandard hacks like this. – R.. GitHub STOP HELPING ICE
Apr 2 '12 at 0:30

1
  

In particular, you subsume the whole argument list into the  and then use macros that extract the
first (or whatever index you want) argument from .

...

__VA_ARGS__ – R.. GitHub STOP HELPING ICE Apr 2
'12 at 0:32

  
@R.. Yes, there is. And  is it terrifying. I added a self-contained way that I drummed up. Can you
suggest a better one?

wow
– John Calsbeek Apr 2 '12 at 0:54

   
I haven't used it, but I believe boost preprocessor will hide some of that ugliness for you if you would
like. – Jesse Good Apr 2 '12 at 1:01

  
@Jesse Yes, it will, at the cost of a large unwieldy dependency. Between that and not being standards-
compliant, I'll take the one-line solution. (Assuming it works on your compiler.) – John Calsbeek Apr 2
'12 at 1:03

  
@R.. I can't think of any better ways to do it without running into warnings about too many or too few
parameters…? – John Calsbeek Apr 2 '12 at 1:09

  

I was thinking something like 
 (note that the order of arguments to 

 has to be changed then, but this function should presumably not be used directly
anyway).

#define DumpStr(...)

DumpString(STRINGIFY(ARG1(__VA_ARGS__)), __VA_ARGS__)

DumpString

– R.. GitHub STOP HELPING ICE Apr 2 '12 at 1:15

 

@R.. But doesn't the definition of  run into the same problems? It might have to take an empty
variadic argument list, which is non-standard, or else use a messy implementation like mine.

ARG1

– John Calsbeek Apr 2 '12 at 1:16

 
 and  should work.#define ARG1_X(a, ...) a #define ARG1(...) ARG1_X(__VA_ARGS__, 0)

– R.. GitHub STOP HELPING ICE Apr 2 '12 at 1:18

   
@R.. Ah, yes, that's not bad. That only requires  supporting macros, not seven. (Somehow, in C-land,
we consider that elegant.)

four
– John Calsbeek Apr 2 '12 at 1:25

 
Well most of them are reusable and tend to already be handy if you're using the preprocessor a lot...
– R.. GitHub STOP HELPING ICE Apr 2 '12 at 3:26
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