
Passing variable name as string to function with default parameters
 Asked 9 years, 6 months ago Active 9 years, 6 months ago 5k timesViewed

4

1

Let’s say there is a debugging function, simplified here as:

{
(, varname, var);

}

 str[]= ;
(str,);

> str : foobar

void DumpString(* var, * varname)char char

printf "%s : '%s'\n"

char 10 "foobar"
DumpString "str"

Let’s make it easier by removing the unnecessarily extraneous requirement of passing the
variable twice, once in quotes:

{
(, (var), var);

}

 str[]= ;
(str);

> var : foobar

VARASSTR(v) #vdefine

void DumpString(* var)char

printf "%s : '%s'\n" VARASSTR

char 10 "foobar"
DumpString

Oops! It uses the local variable name instead of the one passed in. Let’s try a different (and
less ideal) tack:

{
(, varname, var);

}

 str[]= ;
(str);

> str : foobar

DumpStr(v) DumpString(v, #v)define

void DumpString(* var, * varname)char char

printf "%s : '%s'\n"

char 10 "foobar"
DumpStr

Great it works. But what if the function was a little more complicated:

{
(, varname, var);
(, optionalvar);

}

void DumpString(* var, * varname, optionalvar=)char char int 0

printf "%s : '%s'\n"
printf "blah: %d"

It is not possible to overload a macro, so won’t work, and we have already ruled out
the version with .

DumpStr

VARASSTR

https://stackoverflow.com/questions/9969490/passing-variable-name-as-string-to-function-with-default-parameters
https://stackoverflow.com/questions/9969490/passing-variable-name-as-string-to-function-with-default-parameters?lastactivity
https://stackoverflow.com/posts/9969490/timeline

How can this be handled (without resorting to multiple similarly, but differently-named
functions/macros)?

c++ stringify variable-names default-parameters

Share Follow edited Apr 2 '12 at 1:25 asked Apr 2 '12 at 0:08
Synetech
9,057 8 60 91

"How can this be handled (without resorting to multiple similarly, but differently-named
functions/macros)?" It can't. You can't overload macros. – meagar ♦ Apr 2 '12 at 0:11

 You should try some language with reflection capabilities. No, really. – iehrlich Apr 2 '12 at 0:13

1

You could use to "simulate" overloading with macros.Variadic macro trick – Jesse Good Apr 2 '12 at
0:27

 Thanks for linking my question. :-) – R.. GitHub STOP HELPING ICE Apr 2 '12 at 1:15

You cannot overload functions too (or why did you tag this question), so what is the problem?c

– asaelr Apr 2 '12 at 1:18

1 Answer Active Oldest

1

This is non-standard, but works as an extension in GNU C:

DumpStr(v, ...) DumpString(v, #v, ##__VA_ARGS__)define

In GNU C, you can pass no arguments to a variadic macro, and the "token pasting operator"
 when applied between a comma and an empty variadic argument list produces nothing

(so the trailing comma is suppressed).
##

In Visual C++, I believe the token pasting operator is unnecessary (and will probably break
the macro), as Visual C++ automatically suppresses a trailing comma if it appears before an
empty variadic argument list.

##

Note that the only thing that makes this nonstandard is the desire to sometimes pass an
empty argument list. Variadic macros are standardized in both C99 and C++11.

 And here's an example that doesn't use non-standard features. You can see why some
people really, really wish this sort of thing was addressed in the standard:
Edit:

DUMPSTR_1(v) DumpString(v, #v)define

DUMPSTR_2(v, opt) DumpString(v, #v, opt)define

DUMPSTR_NARG(...) DUMPSTR_ARG_N(__VA_ARGS__, 4, 3, 2, 1, 0)define

DUMPSTR_ARG_N(_1, _2, _3, _4, n, ...) ndefine

DUMPSTR_NC(f, ...) f(__VA_ARGS__)define

DUMPSTR_NB(nargs, ...) DUMPSTR_NC(DUMPSTR_ ## nargs, __VA_ARGS__)define

Votes

https://stackoverflow.com/questions/tagged/c%2b%2b
https://stackoverflow.com/questions/tagged/stringify
https://stackoverflow.com/questions/tagged/variable-names
https://stackoverflow.com/questions/tagged/default-parameters
https://stackoverflow.com/q/9969490
https://stackoverflow.com/posts/9969490/revisions
https://stackoverflow.com/users/119540/synetech
https://stackoverflow.com/users/229044/meagar
https://stackoverflow.com/users/2612002/iehrlich
http://stackoverflow.com/questions/5365440/variadic-macro-trick
https://stackoverflow.com/users/906773/jesse-good
https://stackoverflow.com/users/379897/r-github-stop-helping-ice
https://stackoverflow.com/users/1055952/asaelr
https://stackoverflow.com/questions/9969490/passing-variable-name-as-string-to-function-with-default-parameters?answertab=active#tab-top
https://stackoverflow.com/questions/9969490/passing-variable-name-as-string-to-function-with-default-parameters?answertab=oldest#tab-top
https://stackoverflow.com/posts/9969534/timeline
https://stackoverflow.com/questions/9969490/passing-variable-name-as-string-to-function-with-default-parameters?answertab=votes#tab-top

DUMPSTR_NA(nargs, ...) DUMPSTR_NB(nargs, __VA_ARGS__)define

DumpStr(...) DUMPSTR_NA(DUMPSTR_NARG(__VA_ARGS__), __VA_ARGS__)define

There's probably a few cleaner ways to do this. But not that many.

 And here's yet another example that doesn't use non-standard features, courtesy of Edit 2: R..

STRINGIFY_IMPL(s) #sdefine

STRINGIFY(s) STRINGIFY_IMPL(s)define

ARG1_IMPL(a, ...) adefine

ARG1(...) ARG1_IMPL(__VA_ARGS__, 0)define

DumpStr(...) DumpString(STRINGIFY(ARG1(__VA_ARGS__)), __VA_ARGS__)define

Note that this requires the argument order of the to be changed so that the
stringified function name is the first argument.

DumpString

Share Follow edited May 23 '17 at 12:24
Community Bot
1 1

answered Apr 2 '12 at 0:18
John Calsbeek
34.6k 7 90 100

 There are solutions to this problem without nonstandard hacks like this. – R.. GitHub STOP HELPING ICE
Apr 2 '12 at 0:30

1

In particular, you subsume the whole argument list into the and then use macros that extract the
first (or whatever index you want) argument from .

...

__VA_ARGS__ – R.. GitHub STOP HELPING ICE Apr 2
'12 at 0:32

@R.. Yes, there is. And is it terrifying. I added a self-contained way that I drummed up. Can you
suggest a better one?

wow
– John Calsbeek Apr 2 '12 at 0:54

I haven't used it, but I believe boost preprocessor will hide some of that ugliness for you if you would
like. – Jesse Good Apr 2 '12 at 1:01

@Jesse Yes, it will, at the cost of a large unwieldy dependency. Between that and not being standards-
compliant, I'll take the one-line solution. (Assuming it works on your compiler.) – John Calsbeek Apr 2
'12 at 1:03

@R.. I can't think of any better ways to do it without running into warnings about too many or too few
parameters…? – John Calsbeek Apr 2 '12 at 1:09

I was thinking something like
 (note that the order of arguments to

 has to be changed then, but this function should presumably not be used directly
anyway).

#define DumpStr(...)

DumpString(STRINGIFY(ARG1(__VA_ARGS__)), __VA_ARGS__)

DumpString

– R.. GitHub STOP HELPING ICE Apr 2 '12 at 1:15

@R.. But doesn't the definition of run into the same problems? It might have to take an empty
variadic argument list, which is non-standard, or else use a messy implementation like mine.

ARG1

– John Calsbeek Apr 2 '12 at 1:16

 and should work.#define ARG1_X(a, ...) a #define ARG1(...) ARG1_X(__VA_ARGS__, 0)

– R.. GitHub STOP HELPING ICE Apr 2 '12 at 1:18

@R.. Ah, yes, that's not bad. That only requires supporting macros, not seven. (Somehow, in C-land,
we consider that elegant.)

four
– John Calsbeek Apr 2 '12 at 1:25

Well most of them are reusable and tend to already be handy if you're using the preprocessor a lot...
– R.. GitHub STOP HELPING ICE Apr 2 '12 at 3:26

https://stackoverflow.com/users/379897/r
https://stackoverflow.com/a/9969534
https://stackoverflow.com/posts/9969534/revisions
https://stackoverflow.com/users/-1/community
https://stackoverflow.com/users/5696/john-calsbeek
https://stackoverflow.com/users/379897/r-github-stop-helping-ice
https://stackoverflow.com/users/379897/r-github-stop-helping-ice
https://stackoverflow.com/users/5696/john-calsbeek
https://stackoverflow.com/users/906773/jesse-good
https://stackoverflow.com/users/5696/john-calsbeek
https://stackoverflow.com/users/5696/john-calsbeek
https://stackoverflow.com/users/379897/r-github-stop-helping-ice
https://stackoverflow.com/users/5696/john-calsbeek
https://stackoverflow.com/users/379897/r-github-stop-helping-ice
https://stackoverflow.com/users/5696/john-calsbeek
https://stackoverflow.com/users/379897/r-github-stop-helping-ice

